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Abstract 

People with serious cardiac problems have had their life span extended with the 
development of the prosthetic heart valve. However, the valves operate continuously at 
approximately 39 million cycles per year and are therefore subject to structural failures either by 
faulty design or material fatigue. The development of a non-invasive technique using an 
acoustic contact microphone and sophisticated signal processing techniques has been proposed 
and demonstrated on limited data sets. In this paper we discuss an extension of the techniques to 
perform the heart valve tests in an anechoic like. Here the objective is to extract a "pure" sound 
or equivalently the acoustical vibration response of the prosthetic valves in a quiet environment. 
The goal is to demonstrate that there clearly exist differences between values which have a 
specific mechanical defect known as single leg separation (SLS) and non-defective valves 
known as intact (INT). We discuss the signal processing and results of anechoic acoustic 
measurements on 50 prosthetic valves in the tank. Finally, we show the results of the individual 
runs for each valve, point out any of the meaningful features that could be used to distinguish the 
SLS from INT and summarize the experiments. 

INTRODUCTION 

The development of a non-invasive technique to detect the potential structural failure of a 
prosthetic heart valve while still operating in a patient is critical both for the patient's life 
especially since he/she is a poor candidate for surgery. Heart valves operate continuously at 
approximately 39 million annual cycles and are subject to structural failures. Here we discuss 
the analysis of a particular heart valve, the Bjork-Shiley Convexo-Concave (BSCC) which was 
implanted nationally in 32,000 patients. The prosthetic heart valve tests were motivated by the 
need to understand the heart valve dynamics and sounds emitted sounds by the valves in a 
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moderately quiet, reverberation free environment. The results of identifying the sound in the 
spectral domain can then be extrapolated to improve the overall processing of clinical data 
already available as well as indicate salient spectral features which could potentially be 
incorporated into a classification scheme to distinguish a fractured valve from one that is not [ 1- 
61. Thus, the BSCC valves were to be tested in an anechoic test tank to eliminate the 
reverberations and other artifacts experienced in the human body. 

The BSCC prosthetic heart valve is shown below in Figure 1. Here we see the basic 
valve components: the flange, disk occluder, inlet strut and the outlet strut. Both the closing and 
opening valve positions are shown with the inlet strut excited strongly during the closing cycle 
and the outlet strut excited weakly directly during the opening cycle. The outlet strut is subject 
to fracturing, since it must be bent to insert the disk during valve assembly and consists of a thin 
piece welded to the flange. Next we discuss the signal processing used to extract the valve 
sounds from anechoic tank measurements. 

Figure 1. Bjork-Shiley Convexo-Concave Prosthetic Heart Valve Components with Closed 
Position Showing Inlet Strut and Opened Position Showing Outlet Strut. 

SIGNAL PROCESSING 

In this section we discuss the basic signal processing performed on the raw heart valve 
transient response measurements after they had been acquired at the facility. The extraction of 
data consists of the following steps: pre-processing, spectral estimation, peak frequency 
estimation, and valve signal estimation [7,8]. 

Pre-processing of the data is necessary to reduce the measurement noise and potential 
artifacts for performing the subsequent spectral estimation. Trends (linear) are removed from the 
data and they are piecewise windowed, that is, they are tapered on each end using a 2% tapering 
window (Blackman) to assure no end effect artifacts (Gibb’s phenomena) in the spectra. 
Following the tapering, the data are half-windowed, which means that a typical window 
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(Blackman here) is cut in half with its maximum at the origin. This type of window assures the 
energy in the transient is preserved approximately. Once this is accomplished the data are ready 
for spectral estimation and screening. 

Of the 100 transient responses gathered, we chose to use the "best" set of 25 spectra to 
represent the ensemble statistically. The approach was to estimate the spectra and use the 
median absolute deviation (MAD) statistic to select the best spectra [lo]. We used a 
nonparametric approach and applied the minimum variance distortionless response (MVDR) 
method known to produce reliable spectra along with its inherent smoothing. The MVDR is a 
data adaptive technique which essentially provides unity gain in the center of each Fourier bin 
and minimizes the noise by producing a data adaptive taper [7,8,9] rather than the default 
rectangular taper inherent in the bin structure. It is particularly effective when SNR are low and 
smoothing is necessary. 

The Peak Frequency Histogram estimate is performed by simply detecting the spectral 
peaks of each of the 25 best transient spectra and estimating their distribution using a histogram. 
This display is quite helpful in finding the predominance of valve spectral peaks and can be very 
useful for analysis and comparisons. 

The "closest to the median" (CTM) signal, which is assumed to represent the response of 
the particular valve under test, is determined by a robust statistical approach. After the best 25 
spectra have been selected using the MAD statistic, the sample median spectrum is determined 
by simply estimating the median amplitude in each bin. The resulting median spectra estimate is 
then used as the reference to determine which of the individual spectra is closest to it, which is 
precisely what the MAD algorithm provides. The transient signal (beat) is identified and taken 
as the best representative of the particular valve's transient response. The CTM signal is used in 
subsequent analysis to study the valve performance. For instance, we compare the ensemble of 
CTM spectra (overlay plot) to demonstrate the similarity of each spectrum of the INT and SLS 
class and perform peak comparisons. Performing this same procedure on the CTM ensemble of 
the INT and SLS class we can obtain the universal or UCTM for each resulting in two signals to 
perform analysis. Thus, the UCTMs are taken in this analysis to be representative of the INT 
and SLS classes. The UCTM is used in the final step to perform comparative analyses as well as 
time-frequency estimation using a parametric processor. By observing the time-frequency 
spectrum, we can see how the valve frequency response changes as a function of time. 

MAD Statistic and MVDR Spectral Estimation Estimation 

In this section we briefly discuss the basic theory behind both the MAD and MVDR 
estimators. The MAD statistic is a robusthesistant estimate of the population standard deviation 
that we apply to prune outliers from the spectral ensembles [6,10]. When the data arise from non- 
normal distributions characterized by long tails, the MAD estimator will more efficiently 
estimate population standard deviation than the sample standard deviation (SD). The gain in 
efficiency depends is particularly great in the case of outliers, a common form of non-normality. 
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The equations for SD and MAD are: 

and m = Median xilf; M = K x Medianlx, - M I :  . 

The constant K is adjusted so that MAD gives nearly the same result as SD when the data 
are exactly normal. Both SD and MAD are estimating the same thing, the population standard 
deviation 0. If the data are normal, then the SD (n>10) estimates 0 with optimal efficiency as 
show by its variance. 

o2 Var(SD) = - 
2n 

On the other hand when the data come from a non-normal and long-tailed distribution the 
efficiency of the SD degrades significantly. The usual measure of the non-normality of long- 
tailed distributions is the kurtosis. Distributions with excess kurtosis (the normal has zero 
kurtosis) are more peaked at the center and have longer tails than the normal. When we include 
the effects of kurtosis on the variance of SD becomes: 

In practical terms this means the SD gives a poor estimate when the data are 
contaminated with outliers, while the MAD statistic provides a estimate. The application of 
MAD to our problem is given by: 

A 

where &&,, is the sample median spectral estimate over the ensemble of transient or beat 
measurements. The MAD statistical estimate returns the beat numbers of the valve transient 
responses in a rank ordered list with the first entry corresponding to the CTM. MAD is applied 
to the resulting CTM ensembles, one for SLS and one for INT, to produce the UCTM 
representing the overall class response and spectra. 

The MVDR spectral estimator originated from the work of Capon [ 1 11 and has also been 
labeled by various names such as the maximum likelihood method (MLM) and the minimum 
variance (MV) [7]. Note that the power spectrum estimation is equivalent to filtering a signal 
with a bank of narrow bandpass filters. In classical methods these bandpass filters are fixed, 
whereas in the MVDR method each filter is datu adaptive, since it is designed to be optimum in 
the sense of rejecting as much out-of-band signal power as possible. The MVDR method solves 
the optimization problem at each spectral frequency bin creating an individual bandpass filter 
based on the spectral information residing in the bin, that is, it solves the problem of finding a set 
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of filter weights {w(n)} at each spectral bin that minimizes the overall power except at the 
narrowband frequency. Formally, we search for the set of optimal weights satisfying 

where J is the energy cost function, z is the data, R,  is the data covariance matrix (NxN), is 
the set of weights (N-vector) to be estimated and v( f ) i s  the discrete vector of Fourier bins 

given by e - j ( N - * ) f m ] .  The solution to this problem is easily determined 
using Lagrange multipliers [2,3] to yield the set of optimal weights as 

ET (f,) = [1 e-fm 

with corresponding power spectrum estimate 
m 1 

Note that the weight in Eq. 6 changes at each specified bin (f,) since it changes through the 
term - V(f , )  , thereby making the MVDR data adaptive. Thus, in practice the MVDR estimator 

essentially constrains the narrow bandpass filter to pass all frequencies in the bin at f, (gain 
constrained to unity) and minimizes any other energy not at that frequency. This completes the 
discussion of the signal processing of the heart valve sounds for eventual classification and 
comparison. Next we discuss the results of this effort. 

ANALYSIS INTACT AND SLS VALVES 

In this section we show the results of MVDR spectral estimator applied to the opening 
sounds measured in both SLS and INT valves during anechoic testing. The following figure 
shows the ensemble spectra indicating the reliability of the measurement system and valve to 
reproduce the sound. The plots also show the corresponding CTM spectra for each valve along 
with the individual valve peak frequency histogram estimates and CTM spectra superimposed to 
indicate how to weight the histogram amplitudes, that is, high count and high amplitude indicate 
a strong and repeatible resonance. Observing each of these plots show the correlation between 
the valve and it peak response. Valve similarity can be deduced by carefully sorting similar 
responses; however, we choose to use the CTM signal to represent the individual valves and the 
universal CTM (UCTM) to represent the class for analysis purposes. 

We concentrate on analyzing the opening sounds of the INT and SLS valves tested in the 
tank. Typical results for intact valve opening sounds are shown in Figure 2 below. A typical 
ensemble is shown in the Figure 2a along with its corresponding median spectral estimate. The 
associated Peak Frequency Histogram is shown in Figure 2b indicating dominant resonant peaks 
at approximately 12, 18, 22, 32, and 55 kHz, that is, over more than 10 counts in the histogram. 
The valve transient CTM signal is shown in Figure 2d along with its corresponding spectra in 
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Figure 2c. The results appear quite good for this valve in the sense that the ensemble bounds are 
small with the variance significantly smaller below 60 kHz. These results indicate that our 
mechanism appears to excite the valve sufficiently to make these measurements in a reasonable 
manner. 

To compare the spectral response of the valves of either the INT or SLS class, we create a 
CTM ensemble for each class. These results are shown in Figure 3 below. In Figure 3a we see 
the ensemble of CTM spectra for both the INT valves along with their corresponding Peak 
Frequency Histogram estimates below in Figure 3b. The results for the SLS opening sounds are 
shown in Figure 3c and Figure 3d. The peak-valley differences are shown in the color coded 
lists of these figures. It is interesting to note from this figure that if we first mentally “smooth” 
the spectra ignoring resonant peaks that the resulting overall spectra have similar shapes which is 
not unexpected because other non-fractured parts of the valve still vibrate under both INT and 
SLS conditions. We notice an initial peaking of both spectra around 10 to 15 kHz, peaking in the 
20 kHz band with a linear decay up until 40 kHz, a broad response follows with peaking between 
40 and 60 kHz and from 60 kHz on the spectra flattens out (high frequency noise). A more 
detailed observation of the figure indicates that the INT spectra are similar with dominant 
resonant peaks (histogram) at 4,6, 8, 17,29, 30,40,50 kHz (above 3 counts), while those for the 
SLS spectra (above 3 counts) are 4,7.4, 12.4,21.6,53 kHz. 
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Figure 2. Typical MVDR Spectral Estimation for INTACT Valve No. I Opening Sounds: (a)  
Ensemble and Median Spectra. (b)  Peak Frequency Histogram Estimates with 
Median Spectra. (c )  CTM Transient Spectra . (d)  CTM Signal. 

CONCLUSIONS 

We found the 25 spectra for each valve (with one exception) to be tightly clustered 
demonstrating that the pruning process was effective. Visual inspection of the ensemble CTM 
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spectra show significant between-valve variation in the spectral fine structure, but general 
similarity in the peak locations. Visual comparison of the two UCTMs for INT and SLS reveal 
some differences. By differences, for example, we mean the appearances of a peak in one 
spectrum and a valley in the other class. Spectral classifiers are based on difference features, 
which are sometimes readily observed by visual inspection or are more subtle and must be found 
by a sensitive spectral feature selectors [5 ] .  Even though the opening sounds contain more direct 
information about the outlet strut fracture [6],  they are plagued by noise because their intensity is 
low yielding a much lower SNR than the closing sounds. Note that UCTMs were calculated for 
the purposes of summary and display only and do not necessarily indicate that the spectra lack 
useful classification features. We include the UCTMs for the opening sounds INT and SLS 
valves and also for the closing sounds shown in Figure 4 below. The arrows and bullets mark 
locations where the INT and SLS UCTMs differ offering some expectation that there is potential 
information available in these signatures to perform a successful classification. Note that we 
used the criteria of placing a bullet on either UCTM spectra when a peak of one corresponds to a 
valley of the other. 

Figure 3. Ensemble CTM Opening Sound Spectra for Tested INTACT and SLS Valves: (a) 
INT Valves Ensemble CTM Spectra. (b) INT Valves Peak Frequency Histogram 
Estimates. (c) SLS Valves Ensemble CTM Spectra. (d )  SLS Valves Peak 
Frequency Histogram Estimates. 

This work was performed under the auspices of the Department of Energy by the 
Lawrence Livermore National Laboratory under contract W-7405-Eng-48. 
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